Tight Continuous Relaxation of the Balanced k-Cut Problem

نویسندگان

  • Syama Sundar Rangapuram
  • Pramod Kaushik Mudrakarta
  • Matthias Hein
چکیده

Spectral Clustering as a relaxation of the normalized/ratio cut has become one of the standard graph-based clustering methods. Existing methods for the computation of multiple clusters, corresponding to a balanced k-cut of the graph, are either based on greedy techniques or heuristics which have weak connection to the original motivation of minimizing the normalized cut. In this paper we propose a new tight continuous relaxation for any balanced k-cut problem and show that a related recently proposed relaxation is in most cases loose leading to poor performance in practice. For the optimization of our tight continuous relaxation we propose a new algorithm for the difficult sum-of-ratios minimization problem which achieves monotonic descent. Extensive comparisons show that our method outperforms all existing approaches for ratio cut and other balanced k-cut criteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond Spectral Clustering - Tight Relaxations of Balanced Graph Cuts

Spectral clustering is based on the spectral relaxation of the normalized/ratio graph cut criterion. While the spectral relaxation is known to be loose, it has been shown recently that a non-linear eigenproblem yields a tight relaxation of the Cheeger cut. In this paper, we extend this result considerably by providing a characterization of all balanced graph cuts which allow for a tight relaxat...

متن کامل

A Group-Strategyproof Cost Sharing Mechanism for the Steiner Forest Game

Abstract. We consider a game-theoretical variant of the Steiner forest problem in which each player j, out of a set of k players, strives to connect his terminal pair (sj , tj) of vertices in an undirected, edge-weighted graph G. In this paper we show that a natural adaptation of the primaldual Steiner forest algorithm of Agrawal, Klein and Ravi [When trees collide: An approximation algorithm f...

متن کامل

Improved kernels for Signed Max Cut parameterized above lower bound on (r, l)-graphs

A graph G is signed if each edge is assigned + or −. A signed graph is balanced if there is a bipartition of its vertex set such that an edge has sign − if and only if its endpoints are in different parts. The Edwards-Erdös bound states that every graph with n vertices and m edges has a balanced subgraph with at least m 2 +n−1 4 edges. In the Signed Max Cut Above Tight Lower Bound (Signed Max C...

متن کامل

Improved Kernels for Signed Max Cut Parameterized Above Lower Bound on (r, `)-graphs

A graph G is signed if each edge is assigned + or −. A signed graph is balanced if there is a bipartition of its vertex set such that an edge has sign − if and only if its endpoints are in different parts. The Edwards-Erdös bound states that every graph with n vertices and m edges has a balanced subgraph with at least m 2 +n−1 4 edges. In the Signed Max Cut Above Tight Lower Bound (Signed Max C...

متن کامل

A Tight Semidefinite Relaxation of the MAX CUT Problem

We obtain a tight semidefinite relaxation of the MAX CUT problem which improves several previous SDP relaxation in the literature. Not only is it a strict improvement over the SDP relaxation obtained by adding all the triangle inequalities to the well-known SDP relaxation, but also it satisfy Slater constraint qualification (strict feasibility).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014